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1. Introduction

Nonparametric tests, based on ranks, have proved useful in a variety of applications.

They are often preferred to normal theory procedures, since rank tests require few assump-

tions about the underlying distribution generating the data. An examination of the book

of Hollander and Wolfe (1973), for example, reveals that rank tests have been developed for

a multitude of hypothesis testing situations, including the two-sample and multi-sample

location problems, the two-way layout problem, the one-sample location problem, the two-

sample dispersion problem with equal medians, and problems of testing for trend and for

independence.

One shortcoming of the present theory of rank tests is that such tests have usually

been constructed on a case-by-case basis, in a quite ad hoc (albeit clever) manner. They

depend strongly on the particular testing situation under consideration, and often do not

extend readily to other hypothesis testing problems. The work of Hijek and Sid;ik (1967)

addresses this issue in some special cases, and contains numerous statements such as the

following (page 95): "from the intuitive point of view, the [Ansari-Bradley] test [of differ-

ence in scale] appears to be an analogue of the Wilcoxon test [for the two-sample location

problem]." Moreover, Hhjek and Sidik (page 98) describe the Siegel-Tukey (1960) method

of converting tests of location into tests of dispersion, and also discuss the literature on ex-

tending two-sample location tests to the multi-sample problem (pages 106--108). However,

there is no truly general procedure for extending an arbitrary rank test from one testing

situation to another.

This paper introduces a general, yet simple construction, which produces many test

statistics for all of the hypothesis testing situations mentioned in the first paragraph.

Indeed, the construction gives rise to the following familiar rank test statistics:

4 (1) the Mann-Whitney statistic, the Wilcoxon statistic, the Mood "median test" statis-1 1
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tic, the Kolmogorov-Smirnov statistic, and the Wald-Wolfowitz statistic for the two-sample

location problem;

(2) the Jonckheere-Terpstra statistic for the multi-sample location problem with or-

dered alternatives;

(3) the Page test statistic for the two-way layout with ordered alternatives;

(4) the Wilcoxon signed rank test statistic and the Fisher sign test statistic for the

one-sample location problem;

(5) the Ansari-Bradley statistic and the 'quartile test" statistic for the two-sample

dispersion problem with equal medians.

In addition, the construction gives rise to many less familiar, yet equally plausible test

statistics. The author is encouraged by these results, and is therefore hopeful that this

novel approach may provide the basis for a new, more unified study of rank tests.

2. The Basic Construction

The proposed construction uses distances between permutations, and between equiv-

alence classes of permutations. Such distances, or metrics, have recently enjoyed increased

attention in the statistical literature. Several well known metrics on permutations are

presented and discussed briefly in Section 3; they will prove essential to our study of rank

tests.

The problem of constructing a nonparametric rank test has the following general

formulation. Given two hypotheses H0 and HI, one wishes to develop a nonparametric

test of Ho versus HI, on the basis of an observed ranking (or permutation) of n individuals

(or items). In this paper, attention is concentrated only on the problem of finding a suitable

2
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test statistic, rather than on the closely related (and important) topic of the distribution

of this statistic under HO.

As a simple example, let the hypothesis HI be that women perform better than men

on a certain test, and Ho is that they do not. The available data are the test scores

of a group of nj men and n2 women, nj + n2 = n. If normal distribution theory is not

applicable, one wants to find a nonparametric test statistic for Ho versus H1, using only

the ranks of the n individual scores.

The proposed general solution to such problems - whether they be the two-sample

location problem illustrated above, or some other nonparametric testing situation - is

based on the distance between two sets of permutations. It is implemented in the following

steps:

Step 1: Collect all data relevant to the problem, and rank order- all of these

observations. This produces a single permutation, which we denote by 7r. (To simplify the

presentation, we will assume throughout that all data come from continuous probability

distributions, so that there are no ties in the permutation 7r.)

Step 2: Identify the set of permutations, which (for the testing problem at hand)

are equivalent to the observed permutation 7r. This is an equivalence class of permutations,

which we denote by [7r].

Step 3: Identify the set E of eztremal permutations, consisting of all permutations

which are least in agreement with HO, and most in agreement with H 1.

Step 4: To test H0 versus H 1 , let d be a metric on permutations, and consider the

minimum pointwise distance between the sets in Steps 2 and 3:

d([7r],E) = min d(ai .

3



This is the proposed test statistic.

Since d(Ir], E) measures the distance from [7] to the set of permutations which are

most in agreement with H 1 , it follows that one wants to reject Ho for 8mall values of

d([], E). This contrasts with the form of some parametric tests, where one computes

the distance from Ho, and rejects H0 if this distance is large. However, as illustrated

especially by the trivial case of testing for trend (Section 12), measuring the distance from

H, is really the only natural way to proceed in the nonparametric situation.

Another immediate, and intuitively appealing, property of the proposed test statistic

d([?r], E), is that d([r], E) attains its extremal value (zero) if and only if the observed

permutation 7r is equivalent to some extremal permutation e e E. In other words, the

strongest evidence for rejecting Ho occurs if and only if 7r is equivalent to some e e E. This

fact follows trivially from the basic metric property that d(7r, a) = 0 if and only if r = a.

Mathematically, the sets of permutations in Steps 2 and 3 can often be given group-

theoretic descriptions. The group theory provides a convenient notation for these sets,

and it simplifies the derivations of the induced test statistics, but it does not appear to be

absolutely essential to the theory.

Although the basic construction is rather abstractly formulated, it gives rise to con-

crete results. Indeed, as discussed below, this procedure: (1) works in a variety of testing

situations; (2) gives rise to many familiar nonparametric test statistics; (3) produces sev-

eral other test statistics which are less familiar, yet equally plausible; and (4) enables us

to extend our tests to other hypothesis testing situations. Moreover, the tests produced

by this procedure have nice statistical properties, which, in turn, suggest possible future

areas of investigation.

4



3. Some Statistically Meaningful Metrics on the Permutation Group

In Section 2 a method of generating rank tests was described briefly, which uses metrics

on permutations. Before giving a detailed illustration of this methodology in Section 4,

it will be helpful to list several especially important metrics, and to introduce a suitable

notation for these metrics.

To any ranking of n items, there corresponds an element 7r of the permutation group

Sn. Thus 7r: {1,...,n} --+ {1,...,n} is a function. We make the important convention

that 7r(i) is the rank assigned to item i.

Diaconis (1982) lists the following metrics on S,, which are among the most widely

used in applied scientific and statistical problems:

K( r,a) = number of pairs of items, (i, j), such that r(i) < 7r(j) and a(i) > aj)

- minimum number of pairwise adjacent transpositions of items needed to

transform 7r into o

is Kendall's tau;

F(7r,a) = r(i) - c(i)l is Spearman's footrule;

R(7r, a) = ( 7r(i)- o())) 1/2 is Spearman's rho;

H(7r,a) = # {i i,...,n:r(i) 0 o(i)} is Hamming distance;

U(1r,a) = n- the length of the longest increasing subsequence in or - (1),... ,o~r-(n)

= n- the maximal number of items ranked in the same relative order by 7r and o

is Ulam's distance.

In the preceding definitions of the metrics, a couple of points require clarification:

(1) For any finite set fi, #ft denotes the number of elements in fl. Thus, Hamming

distance is simply the number of items which are assigned different ranks by the two

permutations.
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(2) The more commonly used forms of Kendall's tau, Spearman's footrule, and Spear-

man's rho are obtained by replacing the metric d by 1 - 2d/M, where M = M(d) =

max d(7r, a'). This has the advantage of renormalizing the possible values to lie between

-1 and 1, so that they can be interpreted in roughly the same way as a correlation coef-

ficient. However, for the purpose of constructing nonparametric tests, we will work with

the original metric versions d, rather than the transformed versions 1 - 2d/M. Indeed,

"- our whole approach is based on using d as a measure of the distance between two sets of

permutations. The prevailing practice of renormalizing these metrics may explain why a

metric-based approach to rank tests has not been previously explored (at least, not in the

context of the present paper).

Kendall's tau and Spearman's rho are, of course, widely used nonparametric "measures

of association" for two rankings. Spearman's footrule has recently enjoyed renewed interest

(Diaconis and Graham (1977), Feigin and Alvo (1986)). Hamming distance is utilized

in coding theory to measure the discrepancy between two binary sequences (Berlekamp
4.

(1968), Cameron and Van Lint (1980)). Ulam's metric is used in DNA research to measure

the distance between two strings of molecules (Ulam (1972, 1981)), and has also been

-investigated in the statistical literature as a nonparametric measure of association (Gordon

- (1979)).

Diaconis (1982) has a beautiful and enlightening discussion of these metrics on the

permutation group. This discussion is summarized, and extended, in the recent monograph

of the present author. In particular, see Critchlow (1985) for a more complete description

of these metrics and their defining properties (pages 5-11), and for a host of additional

applications of these metrics to a different collection of statistical problems, involving fully

ranked and partially ranked data (pages 97-129). Finaly, for further related work, see the

paper of Feigin and Alvo (1986) on a metric-based approach to comparing two populations

of rankers, using Rao's (1982a, 1982b) apportionment of diversity; and see the papers of

6



Mallows (1957), Feigin and Cohen (1978), and Fligner and Verducci (1985) on metric-based

ranking models.

4. The Two-Sample Location Problem, with Ordered Alternatives

The basic construction will be illustrated now, in detail, for the two-sample location

problem with ordered alternatives. In particular, we will proceed methodically through

the four steps described in Section 2, and will discuss the implementation of each step for

the problem at hand.

Recall the example in which the data are the test scores of nj men and n 2 women,

nj + n 2 = n. Let F , and F2 be the (population) distribution functions for men's and

women's scores, respectively. For the two-sample location problem, the null hypothesis is

Ho: Fi(z) =_ F2 (z) (i.e. men and women perform equally), and one possible formulation

of the alternative is H1 : F (z) _: F2 (z), with strict inequality for some z (i.e. women

score higher).

Step 1: The relevant permutation 7r is the observed rank ordering of all n individuals.

We make the following conventions: individuals 1,..., n and ni ±1,..., n + n 2 are from

the first population (men) and second population (women), respectively. (This arbitrary

labeling of the individuals can be performed without any loss of generality, because all of

the metrics under consideration are right- nvariant; that is, they satisfy d(7r, a) = d(7rr, r)

for all 7r,a ,. See Diaconis (1982), Critchlow ((1985), pages 10-11), or the Appendix

of the present paper for a discussion.)

Also, recall 7r(i) is the rank given to individual i, with low-numbered ranks (i.e. ranks

1, 2, 3, etc.) corresponding to low scores. (In general, in the future, we will continue to

follow the convention that "items are ranked from least to greatest.") This completely

specifies r as a member of the permutation group S,,.

7
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Step 2: For the two-sample location problem, a permutation a is "equivalent" to

the observed permutation 7r if and only if it assigns the same set of ranks to population 1,

i.e. if and only if a{1,... ,nl} = 7r{1,... ,nl}. This definition is justified formally by the

theory of maximal invariants (Lehmann (1959)): for this problem, the maximal invariants

are the set of ranks assigned to population 1; a is equivalent to r if and only if it yields

the same values of the maximal invariants. The intuitive idea is that any such a provides

the same information as 7r for the testing problem at hand.

The equivalence class [7r] is thus a subset of S,, consisting of nl!n2 ! permutations. In

group-theoretic notation, [7r] is the left coset 7rS,,, x Sn,, where S, x Sx , is the subgroup

{°reS-: a(i) <  n, V -< n, and a(i) > n V i> n1).

Step 3: The extremal set E consists of all permutations which are most in agreement

with H 1 , and least in agreement with Ho. Intuitively, these are the permutations which

rank all individuals in the first population before all individuals in the second population.

Pictorially, E consists of all rankings of the form

X... X O.O,

where X's and O's denote individuals from populations 1 and 2, respectively. Mathemat-

ically, E is the subgroup Sn, > Sn described in Step 2.

Step 4: The test statistic for Ho versus H, is given by the minimum interpoint

distance between the sets constructed in Steps 2 and 3:

d([r),E) = min d(a,,3).
CreisR XS. 2

iestc XS r

It remains to describe these test statistics explicitly, for various choices of the metric d on

Sn.

8



I
Recall that two test statistics are equivalent if one can be obtained from the other

by a monotone transformation. The following interesting result says that the test statis-

tics induced by the metrics of Section 3 are, in fact, equivalent to some well known test

statistics.

To state the result, we introduce the

Notation: Let N1 and N 2 be the sets N1 ={1,...,j 1} and N 2 -{n + 1,...,n 1 +

n2}. Thus N, and N 2 are the sets of labels for the items in the first and second populations,

respectively.

Let a, < ... < a,, be the ranks assigned by ir to the first population; that is,

{ai,.. .,an,} is the set {7r(1),...,wr(ni)} listed in ascending order. Similarly let an,+1 <

... <a, + be the ranks assigned by ir to the second population.

For i n,..,nlet

til = #{jfeNl: r(j) < i,

42 = £ - t 1l = #{jeN 2 : 7r(j) < i}.

Thus ti 1 is the number of items from the first population, which fall among the top i ranks,

while t,2 is the corresponding number for the second population.

Finally, let fP (z) and F2 (x) be the empirical cumulative distribution functions for the

first and second populations, respectively.

Theorem 1: The test statistics for the two-sample location problem with ordered

alternatives, induced by the metrics of Section 3, are:

K(irSn, x S,,,S,,, x S, 2 ) = #{(i,j)cNl x N 2 : 7r(i) > 7r(.)}.

This is the Mann-Whitney (1947) test statistic.

rsn, X s121,sn, X sn,) = 2 ?r(?')- n(, +

9
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This is equivalent to the Wilcoxon (1945) test statistic ' r(i).
n=1

R .×s.s, = 1C- - i =1 (2 1

This is equivalent to the test statistic iai.
i-1

H(7rsn, x sn2,s., x sn,) = 2#({7 C1), .,7r(nj] n {nj + 1,..,n, +n2})

= 2#(7r(Nil) r) N2 ).

For equal sample sizes (n, = n = n/2), this is equivalent to the Mood (1950) "median

test" statistic (v (r(NI) r) N2) = #(7r(NI) r {n/2 + 1,..., n}).

U(irSn, x Sn2 , Sn, x Sn2 ) = ni - max{ ti - 2 ).
$

For equal sample sizes, this is equivalent to the Kolmogorov-Smirnov test statistic

max L =max
, in, n2 P= (M) -P2(X)

Proof: The derivations of these results, and of the corresponding results in succeed-

ing sections, are deferred to the Appendix. We simply remark here that some elementary

group-theoretic and combinatorial properties are helpful to the arguments. 0

Remarks: It is well known that the Mann-Whitney test statistic and the Wilcoxon

test statistic are equivalent. Yet they are induced by different metrics - namely, K and

F, respectively. This is not particularly surprising, since it is entirely possible for two

different metrics to produce the same minimum interpoint distance between the sets 1w]

and E.

The test statistic induced by Spearman's rho has not appeared previously in the

literature, as far as the author is aware. However, it bears a strong resemblance to one

form of the Cram6r-von Mises test statistic

nj Za +n (ai - n))
-1 si=n+1

10
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(Ha'jek and Sidik (1967), page 93), and also to Page's (1963) test for the two-way lay-

out with ordered alternatives. This latter resemblance is not a coincidence, as Section 8

demonstrates.

Of course, although the test statistics of Theorem 1 are among the most well known,

several other rank test statistics have been proposed for the two-sample location problem.

As discussed in Sections 13.2 and 13.3, nearly all such statistics are induced by our basic

co.struction, by suitable metrics on permutations.

The basic construction carries over to other hypothesis testing situations. As a result,

the construction yields not just a collection of test statistics, but also a collection of families

of test statistics. For example, since Ulam's metric U induces the Kolmogorov-Smirnov

statistic for the two-sample location problem with ordered alternatives, we may regard

the statistics induced by U in other situations as natural extensions of the Kolmogorov-

Smirnov statistic.

For each testing situation, the equivalence class [7r] and the extremal set E must be

identified, before computing the minimum interpoint distance between these two sets.

5. The Two-Sample Location Problem, with Unordered Alternatives

For the two-sample location problem with unordered alternatives, the equivalence

class [1r] = 7rS,, x S, 2 is the same as for the ordered alternatives case. However, the

extremal set E must be expanded to include not only those permutations which rank all of

population 1 before population 2, but also those permutations which rank all of population

2 before population 1. In group-theoretic notation, E S S2 0 (S,, x Sft,), where, as in

Section 4,

Snj XSf2 =SS {CS: c(i) <o(j) V iCNI V jEN2 } {oES,,: a ) oNi)<C(N2 )},

-:-? ':, .".;.;'- ': -:.;. / .-'..- ;:.;'. '/:,.'..:'"::: .;:.:'.;..7-:: ':: : "::,_b :-:.- '."'',".o":' :11.'-> .



and where the "dot product" S2 0 (S,,, x S,,) is defined as {0 e S,: 3 a e S2: f(Ne,(i)) <

#(N,( 2 ))}. (Here and henceforth, the notation n, < 0 2 , where n and f2 are seta of

numbers, means that w, < W 2 for all w, e III and w2 e n2.)

Our basic construction now gives rise to the usual two-sided versions of the test statis-

tics presented in Section 4:

Theorem 2: The test statistics for the two-sample location problem with unordered

alternatives, induced by the metrics of Section 3, are:

% K(7S., x s,,S2 0 S., x S,) = n -n2 - I#{(i,j)ENI x N2 : w(i) > w(j)} - n2nI.
2 2

This is equivalent to the Mann-Whitney (1947) two-sided test statistic = I#{(i,j)cNI x

N2 : ,(i) > r(j)} - nin 2 /21.

"I (n + 1)
F(wS, x Sx S2 0Sx,) ,=nIn 2 - 21 2 - 2= -

This equivalent to the Wilcoxon (1945) two-sided test statistic= I r (i)-nI(n + 1)/2 I.

R2 (rS1 x S,,,S 2 0 Sn, X S)

n(n±+1)(2n +1) n a-2 a n2Zrj )
2: i-im - x o,n2 i (i) - i ir(S)}.

This is the two-sided version of the new test statLatic introduced in Section 4.

H(7rS, x S, 2 ,S 2 ® sn, x Sn2) = 2 min {#(ir(NI) n N2 ), #(ir(N) n {1,...,n 2 })}.

For equal sample sizes (n, = n= n/2), this is equivalent to the Mood (1950) two-sided

"median test" statistic

"I.

I~#(7r(Ni)n + 11,..., I))-71

n n 2 - til i

12

. ... .., ..- .... -.:t..-.-. .. U:*:. -...... *:: . P... , ...*;, :.- ,..; - . . .. . .-... ....... _ .. ..... . .
... . ." - -- : = - % 

"
' if " - I" : il

' -
N . . . I

r
* , * p . % i" r " " " " " € - " '



For equal sample sizes, this is equivalent to the Kolmogorov-Smirnov two-sided test statistic

=maxli- - -i = max I,(X) - P2(X)I.
$ nl n2 Z

Proof: See the Appendix. 0

6. The Multi-Sample Location Problem, with Ordered Alternatives

This is a straightforward generalization of the two-sample situation considered in

Section 4. Suppose we have samples from r > 2 populations, with sample sizes nl,..., n.,

where ni3 = n. Let Fi be the cumulative distribution function for the j-th population.
j=1

The null hypothesis is Ho: Fl(z) -... F,(z), and one possible formulation of the

alternative is H1 : F (z) > F2 (z) > ... _ F, (z), where each inequality is strict for some

X.

We proceed to implement Steps 1 through 4 of the basic construction.

Step 1: The permutation 7r is the observed rank ordering of all n items, with the

conventions: items 1,... ,ni are from the first population, items nI + 1,..., na + n2 are

from the second population, and so on. Let NI, N 2 ,..., N, be the corresponding sets of

labels:
N, = {1,...,,'

.N2 = {aj + 1,. nj + n2)

Nr {nj +.n- I + 1.,ni +. + an,.).

Step 2: The equivalence class [7r] = {aeS: a(Nj) = 7r(Nj)V r 1,...,r} consists

of all permutations a which assign the same set of ranks, that ir does, to each of the r

13



populations. Thus [7r] is the left coset 7rS,,, x ... x S,.., where S,,, x ... x S, is the

subgroup {a e S,: o(Nj) = N Vj = 1,...,r}, or, equivalently, where S,, x ... x S,. =

(a S,: C(NI) <(N 2) < ... < a(N,)}.

Step 3: The extremal set E is S, , x ... x S,,,. In words, E consists of the

permutations which rank all items in the first population before all items in the second

population, which in turn are ranked ahead of everything in the third population, etc.

Step 4: To present the minimum interpoint distances between the sets fir) and E,

it is necessary to further generalize our previous notation.

Notation: Let aI < ... < a,,, be the ranks assigned by 7r to the first population,

a +1 < <ant +n2 be the ranks assigned by r to the second population, and so on.

For i = 1,..., and j=1,...,r,let ti = #{k N: r(k) i} be the number of

items from the j-th population, which fall among the top i ranks.

Let Pi (z) be the empirical cumulative distribution function for the j-th population.

Finally, E denotes summation over all ordered pairs (j, k) such that j < k (and not

k-i

Theorem 3: The test statistics for the r-sample location problem with ordered

alternatives, induced by the metrics of Section 3, are:

K(rSn, x x Sn., Snt x ... x S,,,) = Z # {(i,m) c N x Nk:7r(i) > 7r(m)}.
j <k

14
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This is the Jonckheere (1954)-Terpstra (1952) test statistic.

F(7rS, x ...x , S , x ... x S) = E Iai -il.

1 II 1

* R(sn x ... x sn,s,tx ... x sn)=Z J= ,, -+1 #(l(1) nZia).

i=1H(irs., x ..x SL.,,sn, x ... x s,.,) = (n - #, (7 (Ns) n(Ni) .  - +)

U7n X ... X SL,, Sn1 X .. X Sn?) = (n -n,) - max Zt,i1: $...$S ,-I

Proof: See the Appendix. 03

Remarks: The Jonckheere-Terpstra statistic is usually viewed as the extension of

the Mann-Whitney statistic to the multi-sample situation. Similarly, the statistic induced

by F is a natural extension of the Wilcoxon test statistic, and the statistics induced by R',

H, and U are natural extensions of the corresponding statistics in Section 4. In particular:

(1) The Mann-Whitney and Wilcoxon tests are not equivalent for more than two

samples.

(2) For equal sample sizes from r > 2 populations, the statistic induced by H is

equivalent to the following extension of Mood's median test statistic:

#(7r(N) n N,).
j=1

(3) For equal sample sizes from r > 2 populations, the statistic induced by U is

equivalent to the following extension of the Kolmogorov-Smirnov test statistic:
r-I )ij ti-

15



7. The Multi-Sample Location Problem, with Unordered Alternatives

For the unordered alternatives case, the equivalence class [,r] = irS,, x ... x S,L, is the

same as in the preceding section, but the extremal set E now includes all of the extremal

permutations for all of the r! different possible ordered alternatives. Thus E = S, D (S,, x

... xS,,), where the dot product ST0(S., x... x S,.) equals {#3 e S.: 3 a e Sr: #(No(,)) <

< ... < (N,)).

The metrics K, F, R, H, and U all induce very natural competitors to the Kruskal-

Wallis (1952) test statistic. Each of these competitors is a test statistic which measures

the distance to the closest ordered alternative. The test statistic is thus a minimum of test

statistics of the type presented in the preceding section, with the minimization being done

over all the r! por-ible ordered alternatives. In the statement of Theorem 4, this amounts

to minimizing with respect to a permutation a e S,.

Notation: For 5 1,...,r and i = 1,...,ni, let ali < ... < anji be the ranks

assigned by r to population j.

Theorem 4: The test statistics for the r-sample location problem with unordered

alternatives, induced by the metrics of Section 3, are:

K(irS,, x ... x S,, S,. ® 5, x... x $,, -- rain E #{(i' m)eN,,(') x .N,(k):r (i) > r(m)}.
ors i "2<k

r n.(j) -1FC,,sn, x..x S,,, S, 0 sn, x ... x S,,) = m-in E- F Iao () -i+ n,,o, )).
3=1 s=l k---

R2(7sr S x... x Sn,,s,O., x... x S.) = min ( a (,) - (i + f,,(k))) 2

.=1 k=1=
7 nt.(,) 3;-

n~n + 1)(2n + 1) 2 2i - ())"
3----I i=1 k=1

16
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H(7rS,, x ... x S,,,, S, (D S,,, x ... x S,,,)

= n - mx , #{i N ,): >1 f,°<k)O <r :-v(k)}.OCS, I
i=1 k=1 k=1

U(7rSn, X ... X$S.,,0Sn, X ... X $..)

r-1

=n- max {n,(, + DC,,u-,i,< _...<i,_I
oeg, j=1

Proof: See the Appendix. 0

Remarks: (1) With the aid of modern computing facilities and suitable minimization

algorithms, it should be feasible to calculate any of the preceding test statistics, even for

moderately large r.

(2) For equal sample sizes from r > 2 populations, the statistic induced by U is

equivalent to the following extension of the Kolmogorov-Smirnov statistic:

max ) (F0 .j)(z )- rou+ )(zi))"ZI <...<,,Z-,

8. The Two-Way Layout, with Ordered Alternatives

Suppose there are b blocks, r populations, and r items in each block (one from each

population). Let Xq be the observation from the i-th block and the j-th population. The

two-way layout model is

Xij=A+ -y+ri+cii, fori=1,...,b and j=1,...,r,

where ;z is the unknown overall mean, -yi is the i-th block effect, ri is the j-th population
b r

effect, the cii are i.i.d. noise variables, and -y = 0 - rj.
i=1 .7=1

For the ordered alternatives case, we are testing Ho: r, = ... = rT versus H: r, <

•.. _ r,., where at least one of the inequalities is strict. We proceed to implement Steps I

through 4 of the basic construction.

17
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Step 1: The observed permutation 7r is the ranking of all the n& = rb items. We

make the convention that item (i- 1)r+j is from block i and population j, for i b 1,...

andj 1,..., r. As usual, 7r((i - 1)r + j) is the rank given to this item.

Step 2: For the two-way layout, two permutations r, a e S. are equivalent if

and only if, within etch block, they induce the same permutation of the r populations.

Formally, the permutation ri e S, within the i-th block, induced by 7r, is defined by

7r,(y) = #{k =r,..,: 7C(i - 1)r + k) _< 7r((i - 1)r + y)j

for i = 1,..., b and j = 1,..., r. Similarly, let ai e S, be the permutation within the i-th

block induced by a. Then 7r, a e S, are equivalent if and only if (7r,,..., r,.) = aai,..., a,),

and the equivalence class [7r] is {a e S,: (=r,.. .,,) = Ca,...,a)).

Step 3: The extremal set E is the equivalence class containing the identity per-

mutation a. Thus E =.e f] consists of all permutations which, within each block, rank

population 1 first, population 2 second, and so on.

Step 4: For each of the metrics d = K, F, R 2 , and U, the test statistic induced by

d turns out to be the sum of the within-block distances; that is,

bd([7r], [e]) -- d(7r, e).

(There is some abuse of notation here: d on the !eft hand side is a metric on S, whereas

d on the right hand side is the corresponding metric on S,. Also e on the left hand side is

the identity permutation in S, whereas e on the right is the identity permutation in S,..

Finally, we are referring to R 2 as a "metric," even though it does not satisfy the triangle

inequality.)

The induced test statistics are given by Theorem 5 below.

18



Notation: We introduce the abbreviation "LLIS" for the phrase "length of the

longest increasing subsequence."

Theorem 5: The test statistics for the two-way layout with ordered alternatives,

induced by the metrics K, F, R, and U of Section 3, are:

b

K(il, [e) = K(ri,e)
i=1

b

= #((,,) }{1,...,2: j < k and 7r() > 7,(k)}.
t=l

b b

F([irl,[c]) = F(7,.e) = E 17ir,() - i
i=1 i= j=1

b b r

R2 (7r], [el) R 2 (r) = ZZ (jr,(j) - )2
i---1 1=l13=1

br(r + 1)(2r + 1) -2 , b

3 2zz 7T Z ).

b

This is equivalent to the Page (1963) test statistic j E ,r(j).

b bUC[?l, [e]) = (ri e .,) = n,- LLIs{7r,(I),.. ..,7r(r)).

Proof: See the Appendix. 0

Remarks: For other hypothesis testing situations, the test statistics induced by

R - in particular, the new two-sample location test statistic introduced in Section 4 -

can be regarded now as extensions of Page's test. Similarly, the new tests in the present

section are extensions of previous tests.

The statistic induced by the metric H is not given in Theorem 5, and indeed, has

not yet been determined. In future sections of this paper, analogous omissions will have a

similar meaning.

19
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9. The Two-Way Layout, with Unordered Alternatives

For the unordered alternatives case, the equivalence class [7r] is the same, but the

extremal set E consists of all permutations which, within each block, rank the populations

in the same order. Thus E is the union of r! equivalence classes, one for each possible

ranking a e S of the r populations. Mathematically,

E=S, 0[e]-{O c S,: 3 acS: 8 =av= ,...,b}.

The metrics K, F, R, and U induce new test statistics, which are extensions of previous

tests, and also are natural competitors to the Friedman (1937) - Kendall-Babington Smith

(1939) test. Just as for the multi-sample location problem, these statistics measure the

distance to the closest ordered alternative. Since there are r! possible ordered alternatives,

the expressions for the induced test statistics entail a minimization with respect to a

permutation a e Sr.

Theorem 6: The test statistics for the two-way layout with unordered alternatives,

induced by the metrics K, F, R, and U of Section 3, are:

b
K([7],S, E[]) =min K(ri,,a)

b
- min #{ kj,k) }{1,...,,}2: a(j) < a(k) and 7rj) > w,(k)}.

bb

F([ r], S, ®[e]) -min F(7r, a) -min ZI7ri(i) -o(i)l.
cgs, i=1 1

20
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b

R'(17r],S, G) [e]) = minZR 2 (rta)

b

i=1 j=1

br(r + 1)(2r+)
3 max (i) . *r(j).

b

U([7r], S,.[e]) rainZ U(7ri, a)

b

n - max LLIS{7,ir(i), rj(2),..., 7r,(r)}.
t=1

Proof: See the Appendix. 0

Remarks: In the case of the statistic induced by R, the permutation oeS, in the

preceding theorem is determined by-the rule:

b b
o(j) <a (k) whenever ri(j) < 7i(k).

t=1 1=1

b b
(If L 7ri(j) L 7 ,ri(k), then the relative order of o(j) and o(k) may be chosen arbitrar-

i=1 j=1
ily.)

For the other metrics, the permutation o e S. can be found numerically.

10. The One-Sample Location Problem

For the one-sample location problem, there are nj observations Xl,...,X,,, which

are assumed to follow the model Xi = 1A+4i. The "noise terms" ci are independent random

variables, bymrnetric about 0. We now implement the four steps of the basic construction,

considering initially the case of ordered alternatives. The hypotheses are Ho: A 0 versus

HI: p<0.

• 21
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Step 1: The relative ordering of the observations X1 ,...,X , provides no infor-

mation about the location parameter ju. So we create a superpopulation of n = 2n , + 1

observations, namely: X 1, ... , X,, O,-XI,...,-X,,. The relative ordering of these n
::

items contains all of the information relevant to a rank test of H0 versus Hi, and thus

defines the desired permutation 7r c Sn. For i = 1,... ,, we make the conventions: ob-

servation Xi corresponds to item i, -X corresponds to item n + 1 - i, and 0 corresponds

to item (n + 1)/2 = ni + 1. As usual, the items are ranked from the least to the greatest,

and 7r(i) is the rank given item i.

Step'2: The equivalence clars lrI consists of all permutations which give Xl,..., Xn,

the same set of ranks in the superpopulation as 7r (and similarly for -Xi,..., -Xl)t. To

-. obtain a group-theoretic description of [7r], let N, = {1,... ,nl} be the set of labels for the

observations X,... ,Xn1 , let N 2 = {n + 1}, and let N3 = {n 1 + 2,..., n} be the set of

labels for the observations -Xn,...,-XI. Then [7r) is the left coset 7r ir x S1X Sn1 ,

where S 1 X S1 x S,, is the subgroup {a e S,: a(Ni) = Nj V j = 1, 2,3).

Step 3: The extremal set E is the subgroup S, 1 x S1 x Sn,. Thus E consists of all

permutations which assign the first nj ranks to Xl,...,X,1 (in some order), the middle

rank to 0, and the last nj ranks to -XI,...,-X,. This means that for an extremtl

permutation, all Xi < 0.

Step 4: To describe the induced test statistics, it is helpful to introduce the following

Notation: For r c Sn and for i = 1,...,nl, define r*(i) = 17r(i) - (n + 1)/21.

Then, for 7r constructed from the observations Xl,..., Xn, as above, it follows that 7r* is

a permutation of {1,...,nj}. In fact, 7r'(i) is the rank of 1X1 in the set {IXli,...,IX,nj}.

Let a, < ... < an be an enumeration of the set 7r(NI) = 7r{1,...,nl}, let an,+i =

ni + 1 - ir(n1 + 1), and let a,,+ 2 < ... < an be an enumeration of the set ir(N 3 ) =

22
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Let P, (x) be the empirical cumulative distribution function for the data set Xi,...,

X,,, and let P2 (z) be the empirical c.d.f. for the data set -X 1 ,..., -Xi, .

Theorem 7: The test statistics for the one-sample location problem with ordered

alternatives, induced by the metrics K, F, R, H, and U of Section 3, are:

K(rSx, X S1 x Sn,,Sn, x S, x S.)= 2 Z 7r*(i)"

{iCN 1 : X,>O}

This is equivalent to the Wilcoxon (1945) signed rank test statistic = r" (i).
{ieN, : Xi>O}

F(7rS, x S1 x s.,, x s x S.,) = 4 7 '(i).
{ieN: Xj>0}

This is also equivalent to the Wilcoxon signed rank test statistic.

R 2 (7rS", x S1 x ss x s x S 1 ) = 1: (a1 - i)2

-3 -2 iai.

This is equivalent to the statistic= iai.

i=+1

H(7Sn, X SI X Sn,Sn, x S1 X S) = 2#{i c NV: 7r(i) > -}

2
= 2#{i c Nj: Xi > 0}.

This is equivalent to the Fisher (1925) sign test statistic = #{i e N: Xi > 0}.

U(7rSn, x S1 X SnS., x S1 x Sn,)

n, + 1- n max{AFz(z) -.2 (m)} if ma.x{F 1 (z) - 2 (z)} <1

0 if max{F,(z) - P(2) = 1.

This is equivalent to the test statistic max{F (z) + F, (-z)) - 1 (assuming no ties). Thus

the statistic max{Fi(x) + F(-z)} can be regarded as an extension of the Kolmogorov-
z

Smirnov statistic to the one-sample location problem.

23
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Proof: See the Appendix. 3

For the case of unordered alternatives, the hypotheses are H: A = 0 versus H,: s # 0.

The equivalence class 17r] is the same as before, but the extremal set E should include the

situation where all Xi > 0, as well as the case where all Xi < 0. Thus

E = S2 o(Sn, x S1 x Sn)

S {, c Sn: 3 a bijection a: {1,3} -+ {1, 3}: (N,.(y)) = Ni Vj = 1,3}.

We obtain the natural two-sided versions of the previous tests:

Notation: For i -1,..,n, define ai by

ai=ni+l fori =n,+

ai-i,-i for i = n, + 2,..., n.

Theorem 8: The test statistics for the one-sample location problem with unordered

alternatives, induced by the metrics K, F, R, H, and U of Section 3, are:

K(irSn, x S1 x Sn,, S2 0 S, x S1 x Sn,)

=2 {ni(n, + 1) (, r ))- ni (n + 11

* This is equivalent to the two-sided Wilcoxon signed rank test statistic =7r* (i)'-

n1 (n, + 1)/41.

F(irSn X S X Sn, , S2 0 Sn, X SIx X Sn)

=4fl(fli+ 1) (7'())-ni(n + 1)}

This is also equivalent to the two-sided Wilcoxon signed rank test statistic.

R'(rSt1 X S= X Sf 1 ,-S2,-Sn, X S, f )

n n=mn{Z:(a, _ 1) 2,Z(a, _ i) 2 1

n(n + 1)(2n + 1) -2 na{ j,

i=1 i1
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This is equivalent to the test statistic max{z .= iai, ' ij}.

H(rS,.1 x S1 x S,, S2 ®Sn x $I X S.)

={- -1#{i e NI: Xi > 0}-

This is equivalent to the two-sided Fisher sign test statistic = 1#{i e NI: Xi > 0} -n/21.

U($rS 1 x SI x S, ,S2 0 S, x SI x Sn,)

n,+ -nimax{,(x) - P2(x)} if ma{P 1(x)-.P2(x)}<i

0 if max{i(x) - P 2 (x)} = 1.

This is equivalent to the test statistic max A(z) - -P2(z)j = maxlIA(z) + -l(-z)- I.
r z

Proof: See the Appendix. 03

11. The Two-Sample Dispersion Problem, with Equal Medians

We consider initially the problem of ordered alternatives. Suppose the data come

from two populations, with (population) cumulative distribution functions F(z) and

F 2 (z), respectively, each having the same median 1A. Further assume that F(x) -

F1 (IA + (z - A)/-y) for some "dispersion parameter" -y > 0. The hypotheses to be tested

are Ho: -y _ 1 versus HI: -y < 1. Thus the alternative hypothesis H, is that the second

population is "less spread out" than the first.

Throughout this section we will assume that the two sample sizes, n, and n 2 , are both

even numbers. This assumption is made merely for the sake of notational convenience, and

to illustrate the basic concepts. Similar results can be obtained when n, or n 2 , or both,

are odd numbers. These results are extensions of those presented below (and are just as

intuitive), but it would be slightly messy to consider all of the different cases at once.

We proceed to implement the four steps of the basic construction.

Step 1: As for the two-sample location problem, let items 1,...,n, be from popu-

. - lation 1, and items n ...... ,- n + n 2 be from population 2. Let N and . .be the sets

25



N= {1,...,ni} and N2 = {nI + 1,...,n + n2}, and let n =nI + n2 . The observed

permutation 7r c S,' is the rank ordering of all the n items.

Step 2: For this two-sample dispersion problem, a permutation a e S, is "equivalent'

to the observed permutation 7r if and only if a can be obtained from 7r by a combination

of the following two types of operations: (1) within each population, permuting the labels

assigned to the items in thtt population; and (2) transposing the items ranked in positions

i and ni-1-i, for any i 1 ,...,n. Operations of type (1) have the same justification as was

given in the two-sample location problem, namely, the equivalence class [7r] should depend

only on the sets of ranks r(N 1) and 7r(N 2 ) assigned to the two populations. Operations of

type (2) are justified by the assumption that the two populations have the same median.

To give a group-theoretic description to the equivalence class [7r], let S,, x S,,, be the

subgroup of S.1 corresponding to operations of type (I) above:

S,., x S,, = {o S.: o(Ni) = N V j=1,2},

and let T be the subgroup of S. generated by the transpositions described above as oper-

ations of type (2):

T = {r ,,: V i = n,.. : r(i) = i or r(i) = n + 1 - }.-

The equivalence class [7r] consists of all permutations of the form r 7r a, as r ranges through

T and a ranges through S, x Sf. Hence [7r] is a so-called "double coset' (Curtis and

Reiner (1966)), and is denoted by T 7r S, x S,,.

Step 3: The extremal set E consists of all permutations which rank the items from

the second population "in the middle," and the items from the first population "at the

two ends." Pictorially, E consists of all rankings of the form

x...x o...o x...x,
n, 2 2 nti/2
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where X's and O's denote items from populations 1 and 2, respectively, and where the left

tail of X's and the right tail of X's have the same length. Thus
n+1 n+1

E= {,O cS: ,i(,) -n l -n+1,() Vi. cN Vj eN 2 }
22
n+l n+1c- { S.: Ifl(NI) - 11>- JO(N) - n +

Clearly, E is the equivalence class [0] containing the extremal permutation

i for i-='1,..... M
, (i = i+n2 for i = 1L + n,..,

1i - -! for i =- ni + n,..r + n2.

Thus E is the double coset T 0 S,, x S, 2 .

Step 4: To state the test statistics, we introduce some further

Notation: Let bi,... , bn, be an enumeration of r(Nx) such that

1b, -+2l>. >1b,,, -+i ,
2 -" - 1

and let bn +1,. .. , b, be an enumeration of 7r(N 2 ) such that

For any real number r, let int(r) denote the greatest integer which is less than or equal to

7.

Theorem 9: The test statistics for the two-sample dispersion problem with equal

medians and ordered alternatives, induced by the metrics K, F, R, and H of Section 3,

are:

K(T7rS,,1 X Sn2 , TIPSn, X Sn2 ) E Zmn{7r(i),fl + 1 - r(i)} ) n 2i~j 4

This is equivalent to the Ansari-Bradley (1960) test statistic = min{r(i), n+ 1 -w(i)}.
i=l

F(TrS,, x Sn2,,TS,, x S,,) = 2K(TrS,, x Sx,TOSn, X Sn,).
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This is obviously also equivalent to the Ansari-Bradley statistic.

R 2 (T 7 r S ,, , x S f 2, T S n, x S 2) - lb n2+ 1 n t
X 1)=ZI 2

imi

This is equivalent to the (new) test statistic (it(- -) Ibj-2 1__).

H(TirS,,, x S,,,T S,,, x S,,,) 2n, - 2# i e N,: r(i) < 1 or r(i) n+1-- .
x~2 )2n-2{2i 2.

k'oJr equal sample sizes (n, = n= n/2), this is equivalent to the 'quartile test statistic"

(Westenberg (1948))

-# {i,.1NI: ir (i)< or 7rCi ) _>: 3 + 1 } "

Proof: See the Appendix. 3

For the unordered alternatives problem, we still have [r] = T 7r S,, x S,,, but now

E=TS2 G OnkS, x'Sn2

{3ES,,: 2 a S52: 116i U ~() I V i EIV N(1) Vj N(22 I>2I i o(}

{,6 S: 2 S2: 1#(N,(,)) - n + 1 (N,( 2)) n +
2 2

Notation: Define b,...,b,,by

gj = b+n, fori=1,...,n2
hi-, fori=n2+1,...,n.

Theorem 10: The test statistics for the two-sample dispersion problem with equal

medians and unordered alternatives, induced by the metrics K, F, R, and H of Section 3,

are:

-e K(TrS,, xSn,,TS2O ,S,, xS.0) = X SnO min{ir(i),n + 1- ir(i)} - ni
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This is equivalent to the two-sided Ansari-Bradley statistic (which is the absolute value

term in the above expression).

F(T 7r S, x S.,T S 2 0 S,,, x S,) = 2K(T r S,,, x S,,2,T S 2 0 b S,, X S,2 ).

This is obviously also equivalent to the two-sided Ansari-Bradley statistic.

R 2(T 7r S,, x S 2,T S 2 0 Sn, x S.2 )

min{ (2 n;12• b 2 ± -mt

This is equivalent to the statistic

mn(nIb n + n in L1)Il +ij)

which is the two-sided version of the corresponding statistic introduced in Theorem 9.

*H(T r S,, x Sn2 ,T S2 0 , x S 2)

2min {ni - #{i e N.: (i) < or -i n+j=1,2 - 2 2r 0 . I T }

For equal sample sizes, this equals nj - 21 # {ie N1 : 7r(,) <n /4 or 7r(,). > 3n/4 + 1} -

ni/21, which is equivalent to the two-sided quartile test statistic

n3n
= I #{i NI1 : 7r(i) < or 7r(i) > - + 1} -- I

T 42

Proof: See the Appendix. 03

The extension to the r-sample dispersion problem (r > 2), with equal medians as-

sumed, and with either ordered or unordered alternatives, is relatively straightforward.

These test statistics will appear in a future paper, along with investigations of their sta-

tistical properties.
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12. Testing for Trend

We conclude with a very trivial application of the basic construction, to the problem

of testing for trend. Suppose item i is from population i with cumulative distribution

function F,. We are testing Ho: Fi(z) =- ... =- F.(z) versus HI: Fi(z) > ... > F,&(z)

(where each inequality is strict for some z). Clearly the equivalence class [r] consists only

of the observed ranking ir itself, the extremal set E is just the identity permutation e, and

the test statistic induced by the metric d is d(7r, e). This simple case has been mentioned

in order to show that the procedure "works" here, and also to show that measuring the

distance from H, produces a very natural test statistic.

13. Some Connections with Previous Work

Many important questions are concerned with relating this novel method to the exist-

ing nonparametric theory. We will consider four such potential areas of interconnection:

(1) the theory of maximal invariants, (2) the theory of locally most powerful rank tests

and linear rank tests, (3) the so-called "inverse problem," and (4) partially ranked data.

To keep the discussion manageable, we will consider each of these topics in relation to the

two-s mple location problem (and will therefore use the notation of Sections 4 and 5).

13.1 Maximal Invariants. The theory of maximal invariants (as presented, for

example, in Lehmann (1959)) may, in some cases, yield a more precise formulation of the

set [pr] described in Step 2 of the basic construction. Indeed, for the two-sample location

problem, the maximal invariants are the set 7r{1,... , n} of ranks assigned to the first

population. On the other hand, the equivalence class [7r] consists of all permutations a

such that a{1,...,n 1 } = r{1,...,nz}. Thus, for the two-sample location problem, the

equivalence class (7r] consists of all permutations which produce the same values of the

maximal invariants as 7r.

13.2 Locally Most Powerful Rank Tests, and Linear Rank Tests. Another

30
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natural area of inquiry is the relation with the theory of locally most powerful rank tests, as

presented, for example, in H .jek and Sidik (1967). In this regard, consider the two-sample

location problem with ordered alternatives, for which the hypotheses are Ho: g(z) S f(z)

versus H,: g(x) =- f(z - A) for some A > 0. Here f(x) and g(z) are the underlying den-

sities for the first and second populations, respectively; they are assumed to be absolutely

continuous and to satisfy f If'(x)I dx < 0o.
-00

Let i"r S, be the observed ranking of all n = n1 + n 2 items, as discussed in Section 4.

Then for A > 0 sufficiently small, the locally most powerful rank test (HAjek and Sidik,

pages 67-68) rejects Ho for small values of the test statistic

VL,-1 f' (x('-'))) '

where X(1 ) < ... < X(") are the order statistics for a random sample of size n from the

density f.

It is natural to ask whether tl.s locally most powerful test statistic is, in fact, induced

by our basic construction, by some metric on permutations. More generally, the locally

most powerful rank test statistics are a subclass of the so-called "linear rank test statistics"

of the form h(ir(i)), and we could ask whether any such linear statistic is induced by
,i=1

a metric.

The answer to both questions turns out to be yes.

Notation: Define the function hi: {1,...,n} - R by

h(j)-- E f X )) for j ,...,n.

Hijek and Sidik called these quantities the "scores" generated by the density f; we assume

henceforth that the h 1 (j) are strictly increasing in j. Define the metric df on S" by

ni

31

.-.. .* * ** .- .. *. .. * .



- - -.r- .. - -. -

Theorem 11: For the two-sample location problem with ordered alternatives, the

test statistic induced by the metric df is

d (7s., x s.., sn, X s.2) = 2 hf C, Ci)) 2 Z 2 ()
i=1 i-i

and thus is equivalent t6 the locally most powerful rank test statistic t h1 ( r(i)) for
iml1

testing the hypotheses H0 : g(z) f(z) versus H 1 : g(z) f(z -

Proof: Entirely analogous to the proof of Theorem 1 for the Spearman's footrule

- metric F. In that proof (see the Appendix), substitute h1 (7r(i)) for. r(s) everywhere, and

h' (i) for i. 0

Remarks: (1) The metrics df which yield the locally most powerful rank tests are

a subclass of the so-called "fixed vector metrics," studied, in other statistical contexts, by

Rukhin (1972), Diaconis (1982), and Critchlow (1985, pages 27-30).

(2) The same argument shows that an arbitrary linear rank statistic f h(7r(t)) is
isl

induced by the metric d( r,a) = jh('(i)) - h(a(i))1.

13.3. The "Inverse Problem". Given any locally most powerful rank test statistic

for the two-sample location problem, there exists a metric on permutations which induces

it, and that metric was presented in Section 13.2. The natural generalization of this line of

inquiry is the so-called "inverse problem"; namely, given an arbitrary rank test statistic, we

can ask whether it is induced by some metric. Theorem 11 of Section 13.2 solves the inverse

problem for the locally most powerful statistics for the two-sample location problem, and

more generally for all linear rank test statistics. However, for the two-sample location

problem, there are important test statistics which are not locally most powerful against

any alternative, and which are not linear, such as the Kolmogorov-Smirnov test, the Wald-

Wolfowitz (1940) "runs test", the so-called "tests based on exceeding observations" (H;jek
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and Sidik, pages 89--90), and Lehmann's (1951) "quadruples test". We now discuss the

inverse problem for these tests.

Of course, a principal reason for posing the inverse problem for any test statistic is

that if a corresponding metric can be found, then that metric can be used to extend the

given test statistic to all other hypothesis testing problems.

By Theorem 1 of Section 4, Ulam's metric U induces the Kolmogorov-Smirnov test

statistic, for equal sample sizes. The following result shows that the Wald-Wolfowitz test

statistic is also induced by a metric.

Definition: Let 7r e S,, be the observed ranking of the n1 items from population 1

and the n 2 items from population 2, where nj + n 2 = n. Define the number of "runs" in

7r to be

#{ = 1,...,n: ;r-1 (,r(i) + 1) > n,) + #{= n + I,...,n + n 2 : ,- 1 (r(i) + 1) _< ,,),

with the convention that if 7r(i) = n, then i contributes 1 to the number of runs. Thus, if

X's and O's denote the items from populations 1 and 2, respectively, then

# runs = #(X's followed by an 0) + #(O's followed by an X) + 1.

The Wald-Wolfowitz "runs test" statistic is precisely the number of runs in 7r.

Theorem 12: For 7r,a e S, define

W(ir,a) =- 1,...,n- 1: 7ro'-(i + 1) $ 7r0 1'(i) + 11.

Then W is a metric on S,,. Moreover, for the two-sample location problem with unordered

alternatives, the test statistic induced by W is

W(irS,, x S.,, S2 ( S,,, x S,) #(runs in r) - 2,
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* which is equivalent to the Wald-Wolfowitz "runs test" statistic.

Proof: See the Appendix. 3

Remarks: (1) We could call W(7r, a) the "successor metric" because it counts the

number of items, among those given the top n - 1 ranks by a, which have a different

successor under the ranking 7r than they do under a.

(2) The metric W(w, a) can now be used, in the context of our basic construction, to

find "natural extensions" of the Wald-Wolfowitz runs test to all of the other hypothesis

testing situations considered in this paper. These extensions will be derived and discussed

in a future paper.

(3) It also turns out that all of the "tests based on exceeding observations" (H~jek

and Siddik, pages 89-90) are induced by suitable metrics, as is Lehmann's (1951) one-sided

"quadruples test" statistic

#{(i,j,k,) e N, x N, x N2 x N2 : 7r(i) <w(j) < r(k) <w(l)}.

Therefore, these tests also have natural extensions to other testing situations. A subsequent

paper will introduce the corresponding metrics and investigate the extensions.

(4) The author is not aware of any procedure which solves the inverse problem in

gereral. Rather, solutions to the inverse problem have thus far been obtained only on a

case by case basis. In the case of the Wald-Wolfowitz test, for example, the author just

happened to observe that the metric W (r, a) 'worked".

(5) In Section 13.2, it was shown that all locally most powerful statistics, and indeed

all linear statistics, are induced by metrics. Moreover, the present section demonstrates

that the Kolmogorov-Smirnov and Wald-Wolfowitz statistics are also induced by metrics,
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even though they are not linear. Hence, our basic construction actually gives rise to a

larger class of test statistics, for the two-sample location problem.

13.4 Partially Ranked Data, and the Hausdorff Metric.

A full ranking of n items is simply an ordering of all these items, of the form: first

choice, second choice, ... , n-th choice. If two judges each rank the same n items, statis-

ticians and other scientists have used the various metrics of Section 3 to measure the

closeness of the two rankings.

A partial ranking arises when each judge specifies only his first k choices, where k <

n. The author's recent monograph (Critchlow (1985)) is concerned with extending the

metr'cs of Section 3 to metrics between partial rankings, and with exploring the many

data-analytic applications of such metrics. More complex types of partially ranked data

are also investigated.

What is the relationship of that material with the present paper on rank tests? It

is perhaps surprising that any connection exists at all, since the two topics are ostensibly

quite distinct. However, as shown in the monograph, a partial ranking of n items can be

identified with a right coset

Sir ={cze S,,: 3 a e S: a = o'ir}

of a certain subgroup S of S,,. The idea here is to identify the partial ranking with the

set of full rankings that are consistent with it, and that set turns out to be a right coset

of the above form (Critchlow (1985), pages 12-14).

Distances between partial rankings can therefore be identified with distances between

right cosets Sir, Sa. To obtain such a distance, let d be a metric on S,,, and consider the

quantity

d(SrS) =maxmax min d(a, 0), max min d(c,I).d max SO' OESW OCST 15CSO'
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This is called the "Hausdorff distance" between the cosets S7r and So, induced by d. It

satisfies all of the axioms for a metric on the space of such cosets (e.g. Nadler (1978)). The

author's monograph computes the Hausdorff distances between such right cosets, induced

by the metrics K, F, R, H, and U.

For nonparametric rank tests, the sets of permutations in Steps 2 and 3 of the basic

construction are frequently left cosets 7rS of a subgroup S of S,,. As illustrated by the

*wo-sample location problem with ordered alternatives, many useful test statistics can be

obtained by computing the minimum interpoint distance between two such left cosets.

Moreover, it can be shown that the minimum interpoint distance between two left

cosets actually coincides with the Hausdorff distance between the left cosets:

Proposition: Let G be any finite group, S any subgroup of G, and d any right-

invariant metric on G. Then the Hausdorff distance between any two left cosets wrS and

max max mind(a,), max mind(a,#){ BigS acrS acrS iefS I

is equal to the minimum interpoint distance

m d(a,1)
air$

Proof: This is the Lemma on pages 21-24 of Critchlow (1985), with the roles of

"left" and "right" reversed. 0

In general, Hausdorff distances between left cosets are not the same as Hausdorff

distances between right cosets. That is, the rank test statistics of Theorem I are distinct

from the metrics on partial rankings in the author's :..nograph. However, they can be

I derived by analogous arguments.
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In sum, two different areas of statistical interest - nonparametric rank tests and

partially ranked data - can be approached by quite similar analytical tools.

14. Conclusion

The construction of nonparametric rank tests, and the extension of such tests to other

hypothesis testing situations, are important statistical problems. Various techniques have

been suggested in the statistical literature, for generalizing rank tests to other testing

situations. For example, Hijek and Sidik (1967) discuss the literature on extending two-

sample location tests to the multi-sample problem, and also describe the Siegel-Tukey

(1960) method of converting tests of location into tests of dispersion.

The methodology presented in this paper simultaneously extends an arbitrary rank

test to many other hypothesis testing situations. Since the approach gives rise to so many

useful test statistics, both old and new, its properties deserve further investigation.

APPENDIX: DERIVATIONS OF THE INDUCED TEST STATISTICS

In this appendix we will derive the test statistics induced by the metrics K, F, R,

H, and U for the two-sample and multi-sample location problems, the two-way layout,

a the one-sample location problem, and the two-sample dispersion problem. Each testing

problem will be considered for both ordered and unordered alternatives. In other words,

we will prove Theorems 1 through 10.

Moreover, we will prove Theorem 12, which states that the metric W(7r, a), described

in Section 13.3, induces the Wald-Wolfowitz "runs test" statistic.

Before proceeding to the details of the individual proofs, it will be helpful to discuss a

pair of general properties possessed by many metrics on permutations: the right-invariance

37

S '- t . , , ,..,ltfw , .' .. '..., " - '" .-.. * • .. ".... ".. .. ..



P7 W36 _ _ .1P

property (originally noticed by Diaconis (1982)) and the "transposition property". These

properties will be used extensively in the derivations. Two additional general properties,

the "first and second partition properties", will be introduced in the proof of Theorems 5

and 6, and will be instrumental for Theorems 9 and 10 as well.

1. The Right-Invariance Property

Definition: The metric d on S, is right-invariant if d(r, c) = d(irr, 'r) V 7r, , r e S.

Proposition A.1: All of the metrics on permutations presented in this paper are

right-invariant. In particular, K, F, R, H, and U are right-invariant.

Proof: The proof is very easy and is omitted. 0

Remarks: Proposition A.1 is not a coincidence, as it is natural to require that all of

our metrics be right-invariant. Indeed, in Section 3, to set up the correspondence between

rankings and permutations, a preliminary step was to assign arbitrary numerical labels to

the n items: item 1,..., item n. It is natural to insist that our distances between rankings

should not depend on this arbitrary labeling of the items, and should be invariant under an

arbitrary relabeling. Mathematically, this amounts to requiring that the metrics be right-

invariant. See Diaconis (1982) or Critchlow (1985, pages 10-11) for further discussion.

The right-invariance property has the following important consequence. Many of the

test statistics in this paper are obtained by computing the minimum interpoint distance

between a certain subgroup S of S, and a left coset 7rS of that subgroup. The right-

invariance property implies that this distance is the same as the minimum interpoint

distance between 7rS and the identity permutation e:

Proposition A.2: Let d be a right-invariant metric on S,, let S be an arbitrary
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subgroup of S,, and let 7rS.be a left coset of S (where 7r e Sn). Then

min d(c,, min d(a, e).

Proof:

mini d(a,fl) = mini d(7roa,o!2) = mini d(rciji-,e)
cS al1 1 2 S f.OF1 iff2Cs2

= min d(7ro, e) = min d(a, e).0

2. The Transposition Property

A second property of many metrics on permutations, which will be useful for deriving

several rank test statistics, is the so-called "transposition property".

Definition: Let d be a metric on S,. Let a, P, -y S,, be permutations such that a

and 0 differ by a single transposition; that is, there exist integers p, q n{1,... ,n} such that

a(p) = / (q)

a(q) = pCp)

a( ) = 0(i) V i p,q.

Suppose further that j6(p) -< 6(q) and -y(p) :_ -y(q). If the preceding conditions imply that

d(1,O-y) _< d(a,-y), then the metric d is said to possess the "transposition property".

Proposition A.3: The metrics K, F, and R possess the transposition property.

Proof: This is Lemma 2, pages 50-53 of Critchlow (1985). 0

Remarks: Critchlow (1985) also gives counterexamples which show that the metrics

H and U do not have the transposition property.

In the preceding reference, the transposition property is helpful for a different statis-

tical purpose, that of deriving suitable metrics on partially ranked data. Essentially the
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same property has also been investigated, in yet another statistical context, by Hollander,

Proschan, and Sethuraman (1977).

* * *

We proceed now to the proofs of Theorems 1 through 10, and of Theorem 12.

Proof of Theorems 1 and 3: We will prove Theorem 3 (since Theorem 1 then

follows as a special case).

For the multi-sample location problem with ordered alternatives, the test statistics

(in Theorem 3) are of the form d(7rS, x ... x S,,, S,, x ... x Sn,), where d is one of

the metrics K, F, R, H, U. Since all of these metrics are right-invariant, Proposition A.2

implies that the test statistic induced by d is equal to min d(a, e).
aewS,2 X ... XS.,

Let ao e rSo1 x... x SR,, be a permutation which actually attains the above minimum;

that is, ao satisfies d(ao, e) mn d(a, e). Obviously ao depends on d. Theaer"S.1 X... X$S

rest of the proof splits into three cases, according to the metric d under consideration: (i)

d K, F, or R, (ii) d = U, and (iii) d =H.

(i) If d = K, F, or R, then we can construct a0 as follows. Recall that a,, +...+n _, +

a*nz+...+n,_.++2 < a .+ nn-,+n are the ranks assigned by 7r to population j, for

j-1,..., r. Define o e S by o(i) = a, for i =1,...,n. Clearly ao c 7rS,, x ... x S,

since ao assigns the same set of ranks to population 5 as does 7r. Moreover, it is easy to

see that ao satisfies d(ao, e) = min d(a, e), because each of the metrics K, F,
acrS., X... XS.'

and R possesses the transposition property. Indeed, given any a c irS,, x ... x Sn,, we

can obtain ca0 from a by a sequence of transpositions, each of which satisfies the condition

stated in the definition of the transposition property. (The first transposition transposes

item 1 with item ao'(ai), and so on; the i-th transposition transposes item i with the

item currently assigned the rank a1 .)
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Thus if d = K, F, or R, the test statistic induced by d is d(ao, e), with ao constructed

as above. The results of Theorem 3 follow immediately, for these three metrics.

(ii) If d = U, we claim that the same permutation ao as constructed in (i) satisfies

U(ao, e) - rin U(a, e). Since the metric U does not possess the transposition
aerSM2 x...x S"

property, this claim must be proved by a different argument than in (i).

Lemma A.1: Let a e vrS,1  x ... x S,,, be arbitrary, and suppose that the ranks

ilsi2 i {1,..., n} satisfy i1 < i2 and a-(ij) < a-(i 2 ). Then ao 1 (i1 ) < Z(i2).

Proof of Lemma A.1: Recall that a - (i) is the item assigned the rank i, and that

items nj + ... x n._I + 1,... ,nr + ... + n. are from population j. Now if items a-(ii)

and a-1 (i2) are from the same population j, then so are items a-'(i1 ) and a 1 (i2 ) (since

all permutations in the equivalence class irSn, x ... x Sn, assign the same set of ranks to

population j). It follows that a '(i) < ax(i 2 ), because ao has been constructed in such

L way that within each population, the items are ranked in ascending order.

On the other hand, if items a- (i) and a-1 (i2 ) are from different populations jj, j2,
then a-(i 1 ) < a-(i 2 ) implies jA < j2, whence ao1 (ij) <cao1 (i2 ). The lemma is proved.

From the lemma it follows by induction that for any a e rSn, x ... x So, if i1 <

< ih satisfy a-(i) < ... < a-(i,), then ao (ii) < ... < ao'(iA). Hence LLIS

{a-'(1),... ,a-1 ()} < LLIS{ao 1(1),...,ao1 (n)}. (Recall "LLIS" stands for "length

of the longest increasing subsequence.") Therefore, U(ao, e) = mn U(a, e), as
ate . X ... X S,'

claimed.

It follows that the test statistic induced by U is U(ao, e), with a0 constructed as in

(i). To evaluate U(ao, e), we notice that picking an increasing subsequence of {ao(1),.
.o(n))} amounts to choosing some integers il : i2 : ... , and then choosing those
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items from the first population among the first i l ranks, those items from the second

population among the next i2 - il ranks, and so on. In this subsequence, there will be tiI

items from population 1, t2 - tit 2 items from population 2, and so on, where tj is the

number of items from the j-t4 population which fall among the top i ranks. Therefore

U(go, e) = n -LLS ~()..aG(n)}

= n- max i' i' + (i - ti-A + (n,. - ti,-,,)}

= (n - n,)- ma j i(t+ -

This completes the proof of Theorem 3 for Ulam's metric. As observed in Sections 4 and

6, for equal sample sizes from r = 2 populations, the statistic induced by U is equivalent

to the Kolmogorov-Smirnov statistic. When r > 2, the statistic induced by U is a natural

extension of the Kolmogorov-Smirnov statistic.

(iii) For the metric d = H, we construct the permutation ao as follows. For j - 1,...,r

let my =# (7r(Nj) nN), where we recall that N,= {nj +... +n-1 + n+ + nji

is the set of labels for the items in population j. Let:

Ci1,...,Cj-j be an enumeration of r(Nj) n Ni,

eim+,. ,Cin.- be an enumeration of 7r(N,)I n Ni,

€ #+l,• 9 •c*,. be an enumeration of r(Nj) n N;.

Define ao i S by
(icpk fork=1,...,mi
Oc,. fork =mi +1,...,n i .

r

Then ao e 7rS, x ... S,,, and H(ao, e) = n - m i. On the other hand, for any
j=1

7 r

acrSt, x ... x Sn,, H(a,e) = n- E#{i c N: a(i) =i} n- mi. Thus
j=1 j=1

H(ao,,e) m H(ce) n - E i.
Ce 's., X ... X St, j= 1
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This completes the proof of Theorem 3. 0

Proof of Theorems 2 and 4: We will prove Theorem 4, since Theorem 2 then

follows as a special case.

The test statistics in Theorem 4 are the minimum interpoint distances between the sets

17r= Sx...xS,and E = S, 0S,, x...xS, e S,: 3areS No,: <... <

/3(N.(,))}. These statistics are therefore equal to min min d(ca,/f), where, forO'es'. a¢ers. X...XS.,

PC.Sft X...XS.,

each aoS, e, is some extremal permutation for the ordered alternative Hl,,: F (i)(z) _

" Fu(,)(z), and where E _= e, ,, x... x S,,, = { S , S,: r(N,(1)) < ... <r(N.())}

is the set of all extremal permutations for H, .

We tackle now the problem of calculating min d(a,3), for fixed c c S,.

crS X ... X S.,Oce.S11 X ... XS",

Intuitively, this should not be too much extra work, since we have already calculated the

test statistics for the particular ordered alternative F, (z) > ... > F, (z) in Theorem 3. In

fact, we will demonstrate formally that the calculation of min d(a, i) follows
OCTr.1 X ... xS.'

directly from Theorem 3.

Definitions: For fixed a e S , define the partition Nf,..., N, of {1,...n, n} by Nic =

e0,(Nr )). Let S, S,,( ) x ... x S,,.(,) be the subgroup of S,, given by {r e S": r(Njo) =

Nj7 V j = 1,...,r}. Let S denote the subgroup S,, x ... x S,,, considered previously.

Lemma A.2: The left coset eS equals the right coset Se,.

Proof of Lemma A.2: Both cosets are clearly {r c S.: r,(Ni) = N2 Vj =r

Lemma A.3: The minimum interpoint distance between the sets [r] = rS and
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E, = e.,S can be calculated from the equation

min d(cz,j~ mini d(cz,1).

Proof of Lemma A.3: By Lemma A.2 and the right invariance property,

mi d(a,j) = mii d(r .1,e.C4 2 ) = min d(ri,e, )
acts cSS S

-mind(irse;,e)- mind(re;'s, e)- min d(a,,#).
i tS. acre; I S,

PCS.

The motivation behind Lemma A.3 is that we already know how to find the mini-

mum interpoint distance between the sets ire;'1 , and Se, since Theorem 3 calculates the

distance between two sets of precisely this form.

The test statistics of Theorem 4 follow easily. For example, to find the statistic induced

by the metric d = K, we compute

min K(a, 6) = m x Ark: re;1'(i) > 7re;'(m)}
OCWCireS, k

= #{(i, m)ee,(NU()) x e0 .(N,(k)): ire;1 (i) > 7re 1 (m)}'
Ij<k

= x N,' C): ir(i) > ,r(m)},
5<k

and so the statistic induced by K is

S.S*mini mini K(ax,/6) = rninpj{(i, m),EN,(j) x N, (k): 7r (i) > ir(m)} 0
acS, acre; Is. ps ~

Proof of Theorems 5 and 6: Two new properties possessed by some metrics on

permutations, the "first and second partition properties," are fundamental to deriving the

test statistics for the two-way layout.
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Definition: Let d be a metric on S. for each n > 1. (More precisely, d is a collection

of metrics, defined on S, for each n > 1). Consider an arbitrary partitioning of the set

{1,...,n) into two sets Y and Z. Let yi < ... < y,, and z1 < ... < Z. 2 be enumerations

of Y and Z, respectively, where r, = #Y, r2 = #Z, r + r 2 - n. For each ir S, define

7ry eS,, and rz e $, by

7ryj) = #{k E Y: 7r(k) <5 r(yi))  for j =1,...,rl,

,rz~j) = #{k 6 Z: ,r(k) <5 r(Z)) forj= 1,...,r2.

If the preceding conditions imply that

d(7r, a) > d(7ry, cy) + d(rz, oz) for all 7r, a e S,

then the metric d is said to possess the first partition property. Further, if the additional

conditions

y < zy for all i,j,

7r(yh) < ir(z) for all i,j,

o(y) <a(z,) for all ij

imply that equality is attained above, i.e. d(7r, a) = d(ry, cry)+ d(7rz, oz), then the metric

d is said to possess the second partition property.

The importance of the partition properties is due to the following observation (the

statement and proof of which use the notation of Sections 8 and 9).

Proposition A.4: If the metric d possesses both the first and second partition

properties, then the induced test statistic for the two-way layout with ordered alternatives

is the sum
b

=
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and the induced test statistic for the two-way layout with unordered alternatives is

b

d(E7rl,S, E [e]) = min E d(7r ,a).

Proof: The test statistic for the ordered alternatives case is d(w], [e]) = mi d(a,13).
0 oil

b b
The first partition property implies that d(a, P) > d(ai,/#j) - , d(7ri, e) for all

t=1 ia-l

a e [7r],,6 e [e]. On the other hand, if we consider the particular permutation ao e []

defined by

,co((i- 1)r + ) =(i- 1)r +7ri(j) V i ,...,b V j ,...,r,

and if we take flo = e e [e], then the second partition property implies that the preceding

bound is actually attained:

6 b

d(ao, Po) = Z d(ioi,3o) = e).

b
Hence min d(a, 1) = d(iri, e), as claimed.acid'] i=1

For the case of unordered alternatives, the set of extremal permutations is E U U E,

where E, = {r e S,: Ti = a V i = 1,... ,b}. For each a e S, let e, e E, be the permutation

defined by e,((i- 1)r+) (i- 1)r + "(j) for all i= 1,...,b andj= 1,...,r. The test

statistic for the two-way layout with unordered alternatives is

d([7r],E) = min d(Iir],E,)

= min d([r], le.l)

= min d([r]e,-,),[1<)
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By the result proved in the first part of this proposition (the ordered alternatives case),

this last minimum equals

b b b

min E d((7re,-z,),e) =min d(vio-1, e) = min d(7ri, or).

Theorems 5 and 6 will now follow directly from the following fact.

Proposition A.5: The metrics K, F, R 2 , and U all possess both the first and

second partition properties.

Proof: The proof that these metrics possess the second partition property is very

straightforward, and is omitted.

To show that K satisfies the first partition property, we need only observe (using the

notation in the definition of the partition property) that

K(w,a) = #{(i,j)E{1,...,n }2: r(i) < 7r(j) and o(i) > c(j)}

> #{(i,j)cY x Y: 7r(i) < 7r(j) and (i) > o(")}

+ #{(i,j)eZ x Z: 7r(i) < r(j) and o(i) > o(j)}

ri }': y(i) < 7 ry(j) and oy(i) > ay(j)}

+#{(ij)e{1,. r2  7rz(i) < 7rzj) and az(i) > cz(j)}

= K(?yay)+ K(z,oz).

To prove the first partition property for U, let il,...,im be a maximal collection of

items ranked in the same relative order by 7r,o a Sn. Let yj ... ,yi, and zk ,...,zk,

be enumerations of the sets ni,. .. ,i,} flY and {i,...,i,,} n Z, respectively, where

p + q = m. Then Yj ... , yj, are ranked in the same relative order by 7r and a, and hence

* ",... ,jp are ranked in the same relative order by iry, ay c S,.. Similarly k,,..., l are

ranked in the same relative order by 7rz,0z S, 2 -. It follows that

U 7,a n -m =(rl -P) + (r2 - q) U(7ry,ay) + U(7rz,ocz).
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We sketch the main ideas of the proof of the first partition property for F, which is

relatively difficult. The proof is by induction on n. Assume the property is true for n - 1,

and let r,o CS, be arbitrary. Let me{1,..,n} minimize jr(.) - o(.)l. Without loss of

generality we assume m e Y, and so m = i. for some index i.. Let 7r', a' eS,,- be the

permutations obtained by deleting m, i.e.

0 S if i < m and r(i) < r(m)
7r(i)- i i < m and r(i) > (m)
C (i + i) if i > m and 7r(i + 1) < 7r(m)r(i + 1) - 1 if i > m and 7r(i + 1) > ir(m)

and similarly for a'. Finally, let f01 = {i = 1,...,n: ir(i) < ir(m) and o(i) > a(m)}, let

f1 = {i = 1,...,n: 7r(i) > 7r(m) and o(,) < a(m) , and let fl = f1 U 2-.

It is straightforward to verify the following four equations:

F(ir, a) = F(xr', a') + #f2 + airm))

F(7ry,cy) < F.' ) + #( n Y) + 7ry(im,) - ay(im)j,

Iry (in) - cy (i,.) I = 1r(m) - a (m) - (# (11 n Z) - r( fl2n Z))

< 17r(m) - o(m)I + #(fl n Z).

From these equations and the inductive assumption, we obtain

F(7r,a) = F(7r',a') + #0 + Iw,(m) - o(m)

F(7ra' ) + F(Cr' ,a'z) + #(nn Y) + #(n n Z)

+ I 'y (i.) - Cy(im)I- #(n n Z)

_ F(7ry,ay) + F(rz,az),

as was to be shown.

The proof that R2 possesses the first partition property follows essentially the same

lines as the preceding proof for F, and is omitted. C
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Proof of Theorems 7 and 8: These two theorems present the test statistics for the

one-sample location problem, with ordered and with unordered alternatives, respectively.

We will use the notation of Section 10.

For the case of ordered alternatives (Theorem 7), the test statistic is d(7rSt1 x S, x

.1, S,,, x 51 x S,). Therefore, this statistic can be inferred directly as a special case of

Theorem 3, where the statistic d(7rS.1 x ... x S,,,, S,,, x x S,,7) was derived. Thus,

although Theorem 3 deals with a different testing situation (the multi-sample location

problem with ordered alternatives), the two statistics are algebraically equivalent.

As an example, Theorem 3 implies that the one-sample location statistic induced by

the metric F is F(irS,,, x S, x S,,,S, x S, x Sn,) = F-'= Iai - i" It is now simply a

matter of adapting to the notation of Section 10, to obtain the form of this statistic given

in Theorem 7. Indeed, for the one-sample location problem, one has a,+I-i = n + 1 - ai,

and so ,, la i - il = 2 Z (a',Ca - i) = (22'' 7r(i)) - ni(n, + 1). Moreover, from the

definition of 7r,

iO i (i) + if X- >O

2) - '7 rTi) ifX,<0,

and so the preceding statistic becomes

2 E (r* (i) + n +1) +z ( c+ 7*( ) - n1 (n, +-t~) ( 2-+rI ))1

{tcNi: Xj>0) 2 {iCNI: X,<0)}
n+l

= 2n 1 - n(rn, + 1) + 2 r'(i)- 2 ir'(i)

{iNi: XX>01 (tiN,: X, <0}

= n1 (n + 1) + 2 7 r~i 2 ni(n + 1) 7

=4 7r(i),
{icNi: X >0}

which is equivalent to the Wilcoxon signed rank statistic, as claimed in Theorem 7.

For the case of unordered alternatives (Theorem 8), the test statistic is d( rSn, x S1 x

Snj $2 0 Sn, x S, x S,,,). This statistic is most easily derived by noting that the set of
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extremal permutations

S 2 ®E S,, X S1 X S,,1 = (SX S1 X Sn1 ) U Pn X S1 X SI1 ) = S U iS,

where S = Sn, x S, x Sn,, and where i e S,, is defined by i(i) = n + 1 - i, for i -i.. n.

Therefore the test statistic d(7rS, S 2 0 S) equals min{d(irS, S), d(7rS, S)}.

The distance d(7rS, S) was computed in Theorem 7. To evaluate d(,rS, S), we

first note that Z-1 = i and hence Si - ' = SE = S (because all of these cosets equal

{rESn: r(N1 ) = N3 , r(N2 ) = N 2 , r(Na) = N1 }). Therefore (also using the right-invariance

property) d(7rS, U) = d(7rSSZ) = d(7rSi- 1,S) = d(viSS). This last distance d(7rSS)

*. can be found directly from Theorem 3 (or Theorem 7).

As an illustration, the statistic induced by F (for unordered alternatives) will now

be calculated explicitly. This statistic is min{d(7rS, S), d(7riS, S)}, which, by Theorem 3,

equals min{ Ia: - , EJZ - il}, where a, < ... < a,, is an enumeration of the set
i=2 i----

7r(N 1 ), an,,+ 2 < < an is an enumeration of r(N 3), a < ... < a,,, is an enumeration

of 7ri(N 1), 6n, +2 < ... < a,, is an enumeration of 7ri(N 3 ), and where a,,,+1 = ir(n, + 1),

a,, +1 = 7ri(nj + 1). For the one-sample location problem, it is easy to verify that

In,+l+i for i= ,...,n
=i a =n 1 +l fori=n1 +I

ai-n,I for i -- nj + 2,.. ., n.

The test statistic is thus
n nn,,

m , - ii -f= ma{2'Z(' i-i),2F(a,,+1+i-I}
i= =1 i=1 i=1

= min{2Z(ai - i), 2n, (n, + 1) - 2Z(ai - 'D}
i ---- i ----

= min{4 F 7r'(i), 2n 1(n + 1)-4 Z 7r(i)}
{iN, : Xi>O {iCN, : X >0}

=4 n"(n ) + , (i)) n 4(n +
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(The next to last equality uses Theorem 7.) This is equivalent to the two-sided Wilcoxon

signed rank statistic, as claimed in Theorem 8. 0

Proof of Theorems 9 and 10: These theorems present the test statistics for the

two-sample dispersion problem, with ordered and unordered alternatives, respectively. The

derivations of these statistics will make use of all of the general metric properties, which

we have thus far considered: the right-invariance property, the transposition property, and

the first and second partition properties.

We will use the notation of Section 11, and let S denote the subgroup S,, x S,,

described there. For simplicity, we assume (as in Section 11i) that the sample sizes nj and

n2 are both even numbers.

For the ordered alternatives problem, the extremal set is E = TOS = OS, and so the

test statistic is

d(T7rS, iS) = d(TrS,k) = min d(a,t4)
rcTrS

(by right-invariance). To derive this statistic we must therefore construct a "minimizing"

permutation cxeTirS such that d(ao, 4') = min,,0 ,Ts d(a, 0), and then we must compute

d(ao,¢)

It is straightforward to derive the statistic for the metric d = H. Indeed, let

m 1 = #{i E Nj: 7r(i) 2- or 7r(i) _ n + -} = #(7r(Ni) n 0 (N));
2 2

we must show that

acTrS

Let M2 = #(7r(N 2 ) n O(N 2 )) = mi + n2 - ni. For j = 1,2, let j,, be an

enumeration of the set 7r(Nj) n k(Nj). Choose any ao e S such that for all j and k,

Cr0(O-l(Cjk)) 7r-(Cjk). Let ao = rao0  T7rS. Then ao(k-(cjk)) = cjk =0(0-1(Cjk)),

51



and hence H(ao,ik) -n - {i 1,...,n: ao(i) = ik(i)} = n- (Mi + m2) = 2n, - 2mi.

Thus min H(a, ,) < 2n, - 2m 1 . To prove the reverse inequality, we simply observe that
cAeTrS

for any a =r7ra e T7rS,

2

H(r7rao,1) = - E +{i e4: o7rC(i) = t )}

2

n - E #(rlrc(N) n O(Nj))
2 1

=n - , #(r(N) n t(N 1 ))
j=1

=n - (Mi + M 2 )

= 2n, - 2mj.

To derive the statistics induced by K, F, and R , we need the following result, the

proof of which uses the fact that these three metrics satisfy both the transposition property

and the first and second partition properties.

Lemma A.4: For d = K, F, or R 2 , the permutation ao e T7rS which minimizes

d(., a) my be chosen so as to satisfy the following constraints:

#(o.N)n n1.., ) =
2 2'

ao(1) < ... < ao(ni),

ao(ni + 1) < ... < ao(ni + n 2 ).

Proof of Lenma A.4: Let a e T~rS be arbitrary. Let a' = e TrS, where a e S

is chosen so that

a'(1) < ... < a'(nl), a'(N1 ) = aCNi),

a'(n + 1) < ... < c'(n), a'(N2 ) = a(N 2 ).
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Then d(a, ,0) d(a', 0), by the transposition property (since a' can be obtained from a

by a sequence of transpositions which satisfy the defining conditions of the transposition

property).

Next we partition {1,...,n} into the two sets Y = {1,..., n/2} and Z = {n/2 +

1,..., n}. As defined in the proof of Theorems 5 and 6, let a' and a'z be the permutations

induced by a'1 for these two sets, and similarly define y, Oz. Then by the first partition

property, d(a'f,,) > d(ac'y, y) + d(a'zOz).

Next let a" = ra' e TrS, where r e T is the composition of Ini/2 - #(a'(N1 ) n

{1,...,n/2})j transpositions, chosen so that #(a"(NI) n {1,... ,n/2}) = ni/2. Let ao =

a"oo e T7rS, where ao c S is chosen so that

ao(1) < ... < ao(n 1 ), ao(N.) =,"-,),

ao(n + 1). < ... < ao(n), ao(n2) = z"(N 2).

Then ao also satisfies the- constraint #(ao(NI) n {1,...,n/2}) = ni/2. Moreover, a re-

peated application of the transposition property shows that d(a,, Oy) 2_ d(aoy, Oy) and

d(c', ,OZ) > d(ioz, Oz), and hence

d(C4,, Oy) + d(a','Oz) _> d(aoy, y) + d(aoz,,Oz).

Finally, by the second partition property,

d(aoy, Oy) + d(Qoz, Oz) = d(cto, 0).

Putting together all of the pieces, we obtain the desired result:

d(a, b) > d(c', 0) (by the transposition property)

> d(ac,, tky) + d(c4, Okz) (by the first partition property)

> d(aoy, ?ky) + d(croz, Oz) (by the transposition property)

= d(ao,&) (by the second partition property). C
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The preceding lemma is the key step in deriving the statistics induced by K, F, and

R 2 . Indeed, for d = K or F, it is relatively easy to verify that all permutations ao e TvrS

which satisfy the conditions of the lemma will produce the same value of d(co, b), namely,

the value given in the statement of Theorem 9. The details are omitted.

For d = R 2 , the minimizing permutation ao may be constructed as follows. Recall

(from Section 11) that bl,..., b., is an enumeration of 7r(NI) such that

1b, 2 + 1 . >Ibnt n+ 11

The minimizing ao satisfies the conditions of the lemma, plus the additional constraints:

- 1 a (bi) e N whenever either i is odd and bi < n +1
~~n+l1

or i is even and bi > n+ -

ao (n + 1 - bi) e N, whenever either i is odd and bi > n ,

ori is even and b 25 n+2

(Intuitively, this says that the item from the first population whose rank is furthest from

the median is placed to the left of the median, the next furthest is placed to the right of

the median, and so on. Of course the items within each population must then be relabeled

to ensure that ao(1) <... < ao(ni) and ao(n, + 1) <... < ao(n).)

The proof is by contradiction. If a0 does not satisfy these conditions, one can find

a transposition r e T and a "relabeling permutation" o e S such that R2 (raoo, tk) <

R2 (ao,ib). The details are omitted.

For the case of unordered alternatives (Theorem 10), the test statistic is

d(T7rS, TS2 0 tS) = min{d(TrS, TtS), d(TS,T ,S)},

where is the "other type of extremal permutation":

i+-2 1  fori=1,...,ni
"" ()= i-nj for i=n +l,..,n n+-

i for i = n1 + + 1,...,n, + n 2 .
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The distance d(TirS, TOS) was found in Theorem 9. On the other hand, it can also be

shown that computing d(TrS, TbS) again reduces to Theorem 9. (Intuitively, one need

only relabel the two populations.) The details of the derivation are similar to the details

for the unordered alternatives cases in Theorems 2, 4, 6, and 8, and are omitted. 03

Proof of Theorem 12: This theorem asserts that

W(r,) = i,... ,n- 1: r--(i + 1) # r-'() + 1)

is a metric on S., and that it induces the Wald-Wolfowitz statistic for the two-sample

* location problem with unordered alternatives. To prove it, we use the notation of Sections

4, 5, and 13.3.

We first show that W is a metric on S,. Since W is obviously right-invariant, to check

that W(7r, a) = W(a,7r), it is enough to show that W(7r,e) = -W(c,7r). For any r e Sn

-define i e S,+i by
24)=o i n
nr,+1 fori=n+1.

Then

W(r, e) = #{i= 1,...,,- 1: 7r(i + 1) 9 , r(i) + 1}

= = 1,... ,n: l.(i + 1) # .(i) + 1} -

- #{=--- 1,... ,n: i+ 1 96 it' (,-(i) + 1)) - ( )#n}

-#{i-1,...,n: +(i)+1#'-(i+1)}- 1r-(n)>n}

* = 1,...,n- 1: r- (i) +I # 7r- (i+ I)}

as claimed. (The fourth equality uses the fact that as i ranges from 1 to n, so does -i(i).)

The other metric property which is non-trivial to verify is the triangle inequality. By

right-invariance, this reduces to showing W(,r,a) W(7r, e) + W(e,a). We observe that
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for i - 1,...,n - 1, if both a-'c(i+ 1) = a-I(i) + 1 and 7r(a-(i) + 1) - 7r(a- 1 (i)) + 1,

then 7r-I(i+ 1) = 7rr-i(i) + 1. Hence

W(ir,o') #{ 1,..., - 1: 7Wa1 (i + 1) 96Wrii + 1}

S{i 1,...,n- 1: o-(i+ 1) 3 -(i) + 1)

+ #{i = 1,...,n - 1: 7r(f- 1 (i) + 1) 5 ir(o-(i)) + 1 and o- (i + 1) = a-(i) + 1)

<W(e,a) + #{i = 1,...,n- 1: r(or- 1 (i) + 1) 0 r(- 1 (i)) + 1 and a-'(i) < n- 1}

<W(e,o) + #{i = 1,...,n- 1: ir(i+ 1) # 7r(i) + 1}

= W(e,) +W(W9 C),

as desired.

Finally, we show that W induces the Wald-Wolfowitz "runs test" statistic, for the

two-sample location problem with unordered alternatives. The statistic induced by W is

W(2rS., xSn2,S 2 0S, x S.2) =mi{ mi W(a,e), min W(al)),

where

= + n2 1,...,.
-ni i--nl~l,...,nj I +n2.

To find min W(a, e), let X's and O's denote items from populations 1 and 2,
QCWS',$ XS, 2

respectively. In the ranking 7r, let us say that "an X is followed by an 0" whenever an

item from population 1 is followed by an item from population 2; and let us say that "an

X followed by a space" occurs if the item assigned the rank n belongs to population 1.

We notice first that

min W(a,e) > # (O's followed by an X or a space) -1

+ max {O, #(X's followed by an 0) - 1}

+ #(X's followed by a space).
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Indeed, any 0 followed by an X or a space must contribute 1 to W(Ca, e), nless it happens

to be item n, + n 2. Similarly, any X followed by an 0 must contribute 1 unless it is item

n1; and any X followed by a space contributes 1.

On the other hand, we can construct ao e irSn, x S-2 which actually attains the

preceding lower bound, as follows. Let a, < ... < an, and an,+i < ... '< an,+n 2 be the

ranks assigned by ir to populations 1 and 2, respectively. Choose any pair (j, k) e N, x N2

such that ak = aj + 1 (i.e. choose any X followed by an 0). Let

ai+y i = 1,...,ni - i

ao(i) = ai+i-n n i- 1 - j + 1,..., n1
ai+k-ni -1 i=n + 1,..., ni +n-k + 1
ai+k-n-i i =n 1 +n- k+2,...,nl +n 2.

(If no such pair (j,k) exists, just let ao(i) ai.) It is easy to check that ro e irCn, x Sn2 ,

and that
W(ao, e) = # (O's followed by an X or a space) - 1

+ max {0, #(X's followed by an 0) - 1}

+ #(X's followed by a space).

Hence min W(a, e) is the right hand side above. By a similar argument,
a C 'S. 1 X S I2

min W(a, ) = #(X's followed by an 0 or a space) - 1

+ max {0, #(O's followed by an X) - 1}

+ #(O's followed by a space).

It follows that

W (rSn, x S2, S2 0 Sn, x Sn,) = min{ mi W(a,e), min W(ai)}
011rS, 1 XS.,2  mewS., XS.2

= #(X's followed by an 0) + #(O's followed by an X) - 1

= #(runs in 7r) - 2,

which is equivalent to the Wald-Wolfowitz statistic, as claimed. 03
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